TOPICS IN COMPLEX ANALYSIS @ EPFL, FALL 2024 HOMEWORK 12

MATHIAS BRAUN AND WENHAO ZHAO

Homework 12.1 (High-dimensional Schwarz lemma*). Let $f: B_1(0) \to \mathbb{C}$ be holomorphic such that f(0) = 0, where $B_1(0)$ denotes the unit ball in \mathbb{C}^n , where $n \ge 2$. Assume there exists a constant M > 0 such that $|f(z)| \le M$ for all $z \in B_1(0)$.

- a. Show $|f(z)| \le M||z||$ for every $z \in B_1(0)$, where $||\cdot||$ denotes the Euclidean norm on \mathbb{C}^n .
- b. If n=1, the equality |f(z)|=M|z| for some nonzero $z\in B_1(0)$ implies f(z)=Maz for some $a\in\partial B_1(0)$. In particular, when M>0 then f is biholomorphic. Show that for $n\geq 2$ there is a holomorphic function $f\colon B_1(0)\to B_1(0)$ with f(0)=0 and $\|f(z)\|=\|z\|$ for some $z\in B_1(0)\setminus\{0\}$ that is not even injective 1.

Homework 12.2 (A stronger version of the identity theorem). Let $D \subset \mathbb{C}^n$ be a domain and $f: D \to \mathbb{C}$ be holomorphic. Assume there exists $a \in D$ such that for every multiindex $\alpha \in \mathbb{N}_0^n$, we have $\mathbb{D}^{\alpha} f(a) = 0$. Show f = 0.

Homework 12.3 (Consequences of Hartogs' extension theorem). Let $n \ge 2$ and $U \subset \mathbb{C}^n$ be open. Show the following statements

- a. If $f: U \setminus \{a\} \to \mathbb{C}$ is holomorphic for a given point $a \in \mathbb{C}^n$, then f can be extended to a holomorphic function $f: U \to \mathbb{C}$.
- b. If $K \subset \mathbb{C}^n$ is compact and such that $\mathbb{C} \setminus K$ is connected, then every holomorphic function $f: \mathbb{C}^n \setminus K \to \mathbb{C}$ can be extended to an entire function.
- c. If $f: U \to \mathbb{C}$ is holomorphic, then f cannot have an isolated zero.
- d. If $f: \mathbb{C}^n \to \mathbb{C}$ is entire, then $\{f = 0\}$ is either empty or unbounded.

Homework 12.4 (Merry Christmas*). Enjoy your holidays!

Date: December 16, 2024.

¹Cartan's uniqueness theorem states if $U \subset \mathbb{C}^n$ is bounded and $f: U \to U$ has a fixed point $a \in U$ with $\mathrm{D} f(a) = \mathrm{Id}$ then f(z) = z for all $z \in U$.